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ABSTRACT   
The aim of this study is to provide a comprehensive framework of various sampling techniques utilized in social 

science research. Sampling is a critical step in research design, influencing the accuracy and reliability of study 

findings. This article covers essential methodologies including estimating a population proportion (single 

proportion), estimating a population mean, estimating the difference between two population means, and 
estimating the difference between two population proportions. Additionally, it delves into sample size 

determination methods, highlighting Cochran’s formula for survey research, Nunnally’s formula for scale 

development, Yamane’s formula, and Krejcie and Morgan’s table. The concept of confidence intervals and 

confidence levels is thoroughly explored, elucidating their significance in inferential statistics. By examining how 

confidence intervals work, the study emphasizes the importance of precision and reliability in research estimates. 

The article also addresses critical sampling considerations that researchers must account for to ensure robust and 

valid results. The findings provide a detailed comparison of these methodologies, offering insights into their 

applicability and limitations in various research scenarios. This guide serves as a valuable resource for 

researchers, aiding them in selecting appropriate sampling techniques for their studies, thereby enhancing the 

quality and credibility of their research outcomes. 
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I. INTRODUCTION 
Sampling is a fundamental component of social science research, serving as a cornerstone for drawing 

reliable conclusions about populations. By selecting representative samples, researchers can generalize findings 

to broader contexts (Trochim and Donnelly (2008)). This process is essential for ensuring the generalizability of 

research findings and enhancing the external validity of studies. Moreover, sampling enables researchers to 

optimize resource allocation, minimizing costs and time requirements while still obtaining meaningful results 

(Babbie (2020)). Through well-designed sampling techniques, such as probability sampling, researchers can 

achieve accuracy and precision in estimating population parameters (Fowler (2013)). This approach helps mitigate 

bias and ensures that each member of the population has an equal chance of being included in the sample. 

Additionally, sampling addresses ethical considerations by minimizing the burden on participants and protecting 

their rights and welfare (Bryman (2016)). By selecting representative subsets and anonymizing data, researchers 

can uphold confidentiality and privacy standards. Therefore, sampling plays a vital role in social science research, 
facilitating generalizability, resource efficiency, accuracy, precision, and ethical considerations, thus contributing 

to the integrity and validity of research findings. 

The sample size in research significantly influences the power, precision, and generalizability of the 

study’s findings. Understanding these implications is crucial for designing robust studies and interpreting results 

accurately. Power refers to the probability of detecting a true effect when it exists. A larger sample size increases 

the statistical power of a study, making it more likely to identify significant effects. Smaller sample sizes can 

result in underpowered studies, increasing the risk of Type II errors (Cohen (1992); Maxwell, Kelley, and Rausch 

(2008)). Precision refers to the degree to which repeated measurements under unchanged conditions show the 

same results. Larger sample sizes reduce the standard error of the estimate, leading to narrower confidence 

intervals and more precise estimates of population parameters (Kish (1965); Hair et al. (2010)). Generalizability 

is the extent to which the findings of a study can be applied to the broader population. A larger and more 

representative sample size improves the external validity of the study, ensuring that the results are applicable to a 
wider population (Babbie (2016); Henrich, Heine, and Norenzayan (2010)). 
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Sampling in the context of social sciences is a fundamental methodological approach used to gather data 

from a subset of a larger population to draw conclusions about the whole population (Handwerker (2005)). In 

social sciences, the population often consists of people or groups with diverse characteristics, behaviours, and 

opinions, making it impractical or impossible to study everyone. Sampling constitutes a critical phase in the 

research journey as it directly impacts the validity of conclusions drawn from gathered data. Whether conducting 

quantitative or qualitative inquiries, researchers face the pivotal tasks of determining appropriate sample sizes and 

devising effective sampling methodologies to ensure the robustness of their findings. Thus, sampling allows 

researchers to study a representative sample that reflects the characteristics of the entire population. Sampling 

involves selecting a subset of individuals or units from the population using various techniques such as random 
sampling, stratified sampling, cluster sampling, or convenience sampling.  Drawing from the seminal works of 

Patton (1990) and Miles and Huberman (1994), Onwuegbuzie and Leech (2007) identified 24 sampling strategies 

applicable to both qualitative and quantitative research. These strategies are categorized into two main classes: 

random (probabilistic) sampling and non-random (non- probabilistic) sampling. Additionally, minimum sample 

sizes for various prevalent research designs are summarised. Whether in the social sciences, natural sciences, or 

business, sampling is essential for several reasons, ranging from practicality to statistical validity. Sampling is 

essential in social sciences and research in general for several reasons: (i) Practicality: In many cases, it is simply 

not feasible to study an entire population due to constraints such as time, resources, or accessibility. Sampling 

allows researchers to study a subset of the population, making research more manageable and cost-effective. (ii) 

By studying a representative sample, researchers can make inferences about the larger population with a certain 

level of confidence; (iii) Sampling provides a way to estimate population parameters (such as means, proportions, 

or correlations) with a degree of accuracy. Through statistical techniques, researchers can quantify the uncertainty 
associated with their estimates and assess the reliability of their findings; (iv) Sampling allows researchers to 

gather data more efficiently by focusing resources on the most relevant segments of the population, and (v) In 

many cases, it may not be ethically appropriate or feasible to study an entire population, especially if it involves 

sensitive topics or vulnerable populations. Sampling allows researchers to gather data in a way that respects ethical 

guidelines and protects the rights and well-being of participants. Therefore, sampling is essential because it 

enables researchers to study populations effectively, make valid inferences about them, and produce meaningful 

insights that contribute to our understanding of social phenomena and human behaviour. 

Recent developments in sampling methodologies have seen a significant shift towards innovative and 

more efficient techniques, driven by advancements in technology and changes in research paradigms. One notable 

trend is the increasing utilization of digital platforms and online resources for sampling purposes, allowing 

researchers to reach broader and more diverse populations while minimizing logistical challenges. Additionally, 
there has been a growing emphasis on the integration of multiple sampling methods within a single study, such as 

combining probability-based sampling with non-probability approaches to improve representativeness and 

generalizability. Moreover, developments in machine learning and big data analytics have facilitated the 

exploration of novel sampling strategies, including adaptive and dynamic sampling methods that can adjust in 

real-time based on incoming data streams. These advancements not only offer opportunities for enhancing the 

rigor and efficiency of sampling in social science research but also present new avenues for addressing 

longstanding methodological challenges and advancing our understanding of complex phenomena in diverse 

populations. 

The main purpose of this paper is to provide a comprehensive exploration of sampling methodologies 

and sample size determination in research. Through this paper, the researchers aim to explain various sampling 

techniques, including both probabilistic and non-probabilistic approaches, as well as different formulas employed 

for computing sample sizes across diverse research contexts. 
 

II. CLASSIFICATION OF SAMPLING 

 
Sampling can be classified into two main categories: random (probabilistic) sampling and non-random (non-

probabilistic) sampling. 

 
RANDOM (PROBABILISTIC) SAMPLING 

Random sampling involves the selection of sample members from a population in such a way that each 

member has an equal chance of being chosen. This method relies on chance or probability, ensuring that the sample 

is representative of the population and minimizing bias. The following are some random or probabilistic sampling 

techniques: (i) Simple Random Sampling: Every member of the population has an equal chance of being selected. 

(ii) Systematic Sampling: Selecting every nth member from the population after a random starting point; (iii) 

Stratified Sampling: Dividing the population into homogeneous subgroups (strata) and then randomly selecting 

samples from each subgroup; (iv) Cluster Sampling: Dividing the population into clusters and then randomly 

selecting some clusters for inclusion in the sample; (v) Multi-stage Sampling: Combining two or more sampling 
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techniques in sequence (e.g., stratified followed by cluster sampling); (vi) Probability Proportional to Size (PPS) 

Sampling: Probability of selection for each unit is proportional to its size or some measure of importance; (viii) 

Random Digit Dialing (RDD): Used in telephone surveys where respondents are selected randomly using random 

numbers generated by a computer, and (ix) Random Walk Sampling: A method used in spatial sampling where 

samples are taken at random locations within a defined area by moving randomly from a starting point. These 

techniques aim to ensure randomness and reduce bias in the selection of samples from a population. 

 

NON-RANDOM (NON-PROBABILISTIC) SAMPLING 

Non-random sampling, also known as non-probabilistic or purposive sampling, does not rely on random 
selection. Instead, sample members are chosen based on specific criteria or judgment of the researcher, aiming to 

include individuals who are most relevant to the research objectives. While non-random sampling methods may 

not ensure the same level of representativeness as random sampling, they are often practical when studying hard-

to-reach populations or in qualitative research where depth of understanding is prioritized over statistical 

generalizability.  Non-random (non-probabilistic) sampling techniques include: (i) Convenience Sampling: 

Selection of individuals who are easily accessible or readily available to the researcher; (ii) Purposive Sampling: 

Selection of individuals based on specific characteristics or criteria determined by the researcher’s judgment or 

purpose of the study; (iii) Quota Sampling: Selection of individuals based on pre-defined quotas for certain 

characteristics such as age, gender, or occupation, ensuring representation of various groups in the sample; (iv) 

Snowball Sampling: Initial participants in the study refer or nominate additional participants, creating a chain-like 

sample; (v) Volunteer Sampling: Participants self-select into the study by responding to a call for volunteers; (vi) 

Judgmental Sampling: Selection of individuals based on the researcher’s judgment or expertise in identifying 
relevant cases; (vii) Expert Sampling: Selection of individuals who are considered experts in the field under study, 

and (viii) Accidental Sampling: Selection of individuals who happen to be present at a particular place and time, 

without any deliberate effort to make the sample representative. These techniques are often used when it is 

impractical or impossible to use random sampling methods, but they may introduce bias into the sample and limit 

the generalizability of the results. 

 

III. METHODS FOR DETERMINING SAMPLE SIZE 
 

A. RULE OF THUMB METHODS: SIMPLE GUIDELINES FOR QUICK ESTIMATIONS 

 

1. 10% RULE: The 10% rule suggests using 10% of the total population as a sample size. This rule provides a 

quick estimation method, particularly useful when detailed statistical calculations are impractical. 

Example: If a researcher is studying a small town with a population of 5,000 people, the 10% rule would suggest 

a sample size of 500 individuals. This ensures that the sample is large enough to provide a good representation of 

the town’s population. In a larger setting, such as a university with 30,000 students, applying the 10% rule would 

result in a sample size of 3,000 students. This helps to capture a diverse range of opinions and characteristics 

within the student body. 

While the 10% rule is convenient, it is important to note that for very large populations, this rule might result in 

unnecessarily large samples. In such cases, more sophisticated methods, or guidelines, such as those provided by 

Cochran (1977), Krejcie and Morgan (1970), and Israel (1992), might be more appropriate to balance precision 
and practicality. 

 

2. MINIMUM SAMPLE SIZES: GENERAL RECOMMENDATIONS 

Surveys: For general surveys, a commonly recommended minimum sample size ranges from 100 to 200 

respondents to ensure sufficient statistical power and representativeness (Krejcie and Morgan (1970); Bartlett, 

Kotrlik, and Higgins (2001); Fowler (2013)). 

Example: A national survey studying consumer preferences for a new product might aim for a minimum of 200 

respondents to capture diverse opinions and provide reliable estimates of preferences across different demographic 

groups. 

 

3. EXPERIMENTAL STUDIES 

In experimental research, minimum sample sizes can vary, but a common guideline is to have at least 30 
participants per group to ensure the robustness of statistical comparisons (Roscoe (1975); Cohen (1992)). 

Example: In a clinical trial comparing the efficacy of two medications, having at least 30 participants in each 

treatment group (totaling a minimum of 60 participants) helps to detect significant differences between the groups. 

 

4. QUALITATIVE RESEARCH 
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For qualitative studies, smaller sample sizes are often acceptable, with recommendations ranging from 5 to 30 

participants, depending on the research method and depth of inquiry (Guest, Bunce, and Johnson (2006); Creswell 

(2013)). 

Example: A qualitative study exploring patient experiences with a new healthcare intervention might involve in-

depth interviews with 15-20 participants to gather detailed and rich data. 

 

5. STRUCTURAL EQUATION MODELLING (SEM) 

For SEM, a minimum sample size of 200 is frequently recommended to ensure the stability of parameter estimates 

and the overall fit of the model (Jackson (2003); Wolf, Harrington, Clark, and Miller (2013); Kline (2015)). 
Example: A study investigating the relationships between organizational culture, employee engagement, and job 

performance using SEM would aim for at least 200 participants to ensure reliable and valid model estimation. 

 

B. STATISTICAL METHODS: MORE PRECISE METHODS BASED ON STATISTICAL 

CALCULATIONS 

When determining sample size, more precise methods rely on statistical calculations that consider various factors 

such as effect size, power, significance level, and population variability. These methods ensure that the sample 

size is adequate to achieve reliable and valid results. 

 

1. POWER ANALYSIS 

Power analysis is a critical component in the design of scientific studies, especially when determining the 

necessary sample size. The primary goal is to ensure that the study is capable of detecting a true effect if it exists. 
This involves balancing the risks of Type I and Type II errors, alongside practical constraints like available 

resources. (Cohen, J. (1988); Maxwell, S. E., & Delaney, H. D. (2004); Faul, F., Erdfelder, E., Buchner, A., & 

Lang, A.-G. (2009)). 

 

KEY CONCEPTS IN POWER ANALYSIS 

Power (1 - β): The probability of correctly rejecting the null hypothesis when it is false. A power of 0.80 (80%) is 

commonly used, meaning there is an 80% chance of detecting an effect if it exists. The probability of rejecting 

the null hypothesis when it is true (Type I error). A common α level is 0.05. The magnitude of the difference or 

relationship the study aims to detect. Larger effect sizes generally require smaller sample sizes, and vice versa. 

The number of participants or observations required to achieve the desired power level. The standard deviation 

(σ) of the population. Higher variability necessitates larger sample sizes to detect the same effect size. 
 

STEPS IN CONDUCTING POWER ANALYSIS 

Specify the Hypotheses:  

H0: Assumes no effect or difference. 

H1: Assumes there is an effect or difference. 

Choose the Significance Level (α): Typically set at 0.05, but can vary depending on the field and specific study 

requirements. 

Estimate the Effect Size (d): Based on previous research, pilot studies, or theoretical expectations. Cohen’s d is 

a common measure, where 0.2 is small, 0.5 is medium, and 0.8 is large. 

Determine the Desired Power (1 - β): Commonly set at 0.80 or 0.90. 
Select the Statistical Test: The choice depends on the study design (e.g., t-test, ANOVA, regression). 

Calculate or Use Software for Sample Size: 

Example: A researcher planning a study to detect a medium effect size (Cohen’s d = 0.5) with 80% power at a 5% 

significance level would use power analysis to determine the necessary sample size. Software like G*Power can 

facilitate these calculations. 

 

2. CONFIDENCE INTERVALS 

are a key concept in statistics, providing a range of values that likely contain the true population parameter. They 

offer a measure of the uncertainty or precision of an estimate, such as a mean or proportion, and are widely used 

in various fields of research (Cochran, W. G. (1977); Israel, G. D. (1992)). The percentage of all possible samples 

that can be expected to include the true population parameter. Common confidence levels are 90%, 95%, and 

99%. 
Formula to compute confidence interval  

𝐶𝐼 =  𝑥̅  ± (𝑧 x 
𝜎

√𝑛
) 

where: 𝑥̅ is the sample mean, Z is the Z-score corresponding to the desired confidence level, σ is the population 

standard deviation (or sample standard deviation, n is the sample size. (Gardner, M. J., & Altman, D. G. (1986); 

Cumming, G., & Finch, S. (2005); Moore, D. S., McCabe, G. P., & Craig, B. A. (2017) 
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STEPS TO CALCULATE A CONFIDENCE INTERVAL  

Select the Confidence Level: Determine the level of confidence desired (e.g., 95%). 

Find the Z-score or t-score: Depending on the sample size and whether the population standard deviation is 

known, use the Z-score for large samples (n > 30) or the t-score for smaller samples (n ≤ 30). 

Calculate the Margin of Error: Multiply the Z-score or t-score by the standard error of the mean (SEM): 

Margin of Error = Z x 
s

√n
 

Determine the Confidence Interval: Add and subtract the margin of error from the sample mean: 

CI = x̅  ± Margin of Error  
Scenario: You conducted a survey of 100 individuals to estimate the average height of adults in a city. The sample 

mean height is 170 cm, and the sample standard deviation is 10 cm. You want to calculate a 95% confidence 
interval. 

Given: Confidence Level: 95%, Z-score for 95% confidence level: 1.96 (from Z-tables), Sample Mean (x̅) = 170 

cm, Sample Standard Deviation (s): 10 cm, Sample Size (n): 100. 

Calculate the standard error of the mean (SEM):  

𝑆𝐸𝑀 =  
𝑠

√n
 = 

10

√10
 = 1 

Calculate the margin of error: 

Margin of Error=1.96×1=1.96 

Determine the confidence interval: 

CI = 170 ± 1.96 ⇒ (168.04,171.96) 

So, the 95% confidence interval for the average height is 168.04 cm to 171.96 cm. 

A 95% confidence interval means that if we were to take 100 different samples and compute a CI for each sample, 

we would expect about 95 of those intervals to contain the true population mean. 
 

3. EFFECT SIZE CALCULATIONS 

Effect size is a measure that quantifies the magnitude of a relationship or difference between groups in a study. It 

is essential in the context of sampling because it helps determine the practical significance of findings, guiding 

the design of studies, particularly in determining sample size and power analysis. Effect size is a standardized 

measure that indicates the size of an effect, independent of the sample size. It allows for comparison across 

different studies and is critical in meta-analysis. (Maxwell, S. E., & Delaney, H. D. (2004); Ellis, P. D. (2010); 

Sullivan, G. M., & Feinn, R. (2012); Funder, D. C., & Ozer, D. J. (2019); Ellis, P. D. (2019); Lakens, D. (2021)). 

 

TYPES OF EFFECT SIZES 

(i) Cohen’s d: Used for the difference between two means. (ii) Pearson’s r: Used for the correlation between two 

variables. (iiii) Odds Ratio: Used for the association between binary variables. (iv)  Eta Squared (η²): Used for the 
proportion of variance explained in ANOVA. 

Example: In a psychological study measuring the impact of a new therapy, researchers may estimate a small effect 

size (Cohen’s d = 0.2) and calculate the required sample size to ensure the study is adequately powered to detect 

this effect. 

 

STEPS TO CALCULATE EFFECT SIZE 

Identify the Type of Effect Size Needed: Decide based on the study design and the nature of the data (e.g., 

difference between means, correlation, etc.). 

Calculate the Effect Size: Cohen’s d 

𝑑 =
𝑋̅1 − 𝑋̅2

𝑠𝑝

 

where 𝑋̅1and 𝑋̅2 are the sample means, and 𝑠𝑝 is the pooled standard deviation. 

Pearson’s r: 𝑟 =
∑  (x−𝑥̅ )(𝑦−𝑦̅) 

√Σ(x−x̅)2Σ√(y−y̅)2
 

Odds Ratio (OR): 𝑂𝑅 =  
(𝑎/𝑐)

(𝑏/𝑑)
 

where a, b, c, and d are the counts of the outcomes in a 2x2 table. 

Eta Squared (η²)  η2 =  
𝑆𝑆𝑒𝑓𝑓𝑒𝑐𝑡

𝑆𝑆𝑡𝑜𝑡𝑎𝑙 
 

where 𝑆𝑆𝑒𝑓𝑓𝑒𝑐𝑡  is the sum of squares for the effect and 𝑆𝑆𝑡𝑜𝑡𝑎𝑙  is the total sum of squares. 

Interpret the Effect Size 

Cohen’s d: Small (0.2), Medium (0.5), Large (0.8) 

Pearson’s r: Small (0.1), Medium (0.3), Large (0.5) 
Odds Ratio: OR > 1 indicates a positive association, OR < 1 indicates a negative association. 
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Eta Squared: Small (0.01), Medium (0.06), Large (0.14) 

Example Calculation: Cohen’s d 

Scenario: Comparing test scores between two groups of students using a new teaching method vs. a traditional 

method. 

Group 1 Mean ( 𝑋̅1): 75 

Group 2 Mean (𝑋̅2): 70 

Pooled Standard Deviation (sp): 8 

𝑑 =
𝑋̅1 − 𝑋̅2

𝑠𝑝

 

𝑑 =
75 − 70

8
= 0.625 

Interpretation: Cohen’s d of 0.625 indicates a medium to large effect size, suggesting a moderate practical 

significance of the new teaching method over the traditional one. 

 

FORMULA TO ESTIMATE THE SAMPLE SIZE  

Determining the appropriate sample size is a crucial step in the design of any social science research 

study. A carefully chosen sample size ensures that the study has adequate statistical power to detect meaningful 

effects, while also balancing practical considerations such as time, resources, and feasibility. In social science 

research, where the goal is often to draw conclusions about populations based on data collected from a subset of 

individuals, standardized formulas are commonly employed to estimate the required sample size. These formulas 

take into account various factors such as the desired level of precision, the expected variability within the 
population, the significance level, and the desired power of the study. There are several standardized formulas 

commonly used to determine sample size for social science research. The choice of formula depends on the 

specific research design, the type of data being collected, and the statistical analysis planned for the study. The 

following are some commonly used formulae for different types of studies in social science research: 

 

1. ESTIMATING A POPULATION PROPORTION (SINGLE PROPORTION) 

Estimating a population proportion, also known as a single proportion, is a common task in research when we 

want to infer the proportion of a specific characteristic or attribute within a population based on data collected 

from a sample. This estimation is crucial in various fields, including social sciences, public health, market 

research, and quality control. The formula used to estimate a population proportion (p) from a sample proportion 

(𝑃̂) is:  

𝑛 =
𝑧2. 𝑃̂. (1 − 𝑃̂)

𝐸2
 

Where: 

n is the required sample size. 

Z is the critical value from the standard normal distribution corresponding to the desired confidence level (e.g., 

1.96 for a 95% confidence level). 

𝑃̂= is the estimated proportion from a pilot study or previous research. 

E is the desired margin of error or precision. 

This formula provides an estimate of the sample size needed to estimate the population proportion with a specified 

level of confidence and precision. A larger sample size (𝑛) generally leads to a smaller margin of error (E), 

providing more precise estimates (Kothari, C.R. (2004)). 

Example 1: A researcher is conducting a survey to estimate the proportion of adults in a city who support a 

proposed environmental policy. He wants to estimate this proportion with a 95% confidence level and a margin 

of error of 3%. Based on previous similar surveys or pilot studies, the researcher estimates that approximately 

60% of adults in the city support the policy (𝑃̂=0.60). Using the formula for estimating sample size for a population 

proportion: 

𝑛 =
𝑧2. 𝑃̂. (1 − 𝑃̂)

𝐸2
 

where Z = 1.96 (corresponding to the 95% confidence level); 𝑃̂=0.60; E= 0.03 (3% margin of error)  

𝑛 =
1.962. 0.60. (1 − 0.60)

0.032
 

𝑛 ≈ 1024.48 

Rounding up to the nearest whole number (since one can’t have a fraction of a person in the sample), researcher 

would need a sample size of approximately 1025 adults from the city to estimate the population proportion of 

support for the policy with a 95% confidence level and a margin of error of 3%. 

Example 2: A researcher is conducting a study to estimate the proportion of smartphone users who prefer a 

particular brand in a large metropolitan area. He wants to estimate this proportion with a 99% confidence level 
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and a margin of error of 2%. Unfortunately, the researcher does not have any prior information or pilot study 

results to estimate the proportion of brand preference (𝑃̂). In such cases, researchers often use a conservative 

estimate of 50% (𝑃̂=0.50) to maximize the required sample size, assuming that this proportion will result in the 

largest sample size needed. 

Using the formula for estimating sample size for a population proportion: 

𝑛 =
𝑧2. 𝑃̂. (1 − 𝑃̂)

𝐸2
 

where Z = 2.576 (corresponding to the 99% confidence level); 𝑃̂=0.50; E= 0.02 (2% margin of error)  

𝑛 =
2.5762. 0.50. (1 − 0.50)

0.022
 

𝑛 ≈ 4147.36 

Rounding up to the nearest whole number, the researcher would need a sample size of approximately 4148 

smartphone users from the metropolitan area to estimate the population proportion of brand preference with a 

99% confidence level and a margin of error of 2%. 

Kothari, C. R. (2004). Research Methodology: Methods and Techniques. New Age International. 

 

2. Estimating a population mean 

It is also known as a single mean, is a common objective in research when we want to infer the average value of 

a continuous variable within a population based on data collected from a sample. To compute the ideal sample 

size for estimating a population mean with a specified level of confidence and precision, we typically use the 

formula for sample size estimation. The formula used to estimate the required sample size for estimating a 

population mean (𝜇) is based on the standard normal distribution and is given by: 

𝑛 =
𝑧2. 𝜎2 

𝐸2
 

Where: 

𝑛 is the required sample size. 

Z is the critical value from the standard normal distribution corresponding to the desired confidence level. For 

example, for a 95% confidence level,  

Z is approximately 1.96. 

𝜎 is the population standard deviation (if known). 
E is the desired margin of error or precision. 

This formula provides an estimate of the sample size needed to estimate the population mean with a specified 

level of confidence and precision. A larger sample size generally leads to a smaller margin of error, providing 

more precise estimates of the population mean. It is important to note that if the population standard deviation (𝜎) 

is unknown, researchers often use the sample standard deviation (𝑠) as an estimate. In such cases, the formula for 

sample size estimation becomes: 

𝑛 =
𝑧2. 𝑠2 

𝐸2
 

Where: 

𝑠 is the sample standard deviation. 

This adjusted formula allows researchers to estimate the required sample size based on the variability observed in 

the sample when the population standard deviation is unknown. 

Let us consider a scenario where a researcher is conducting a study to estimate the average weekly income of 

employees in a certain industry. The researcher wants to estimate this population mean with a 95% confidence 
level and a margin of error of $50. Suppose the researcher has some prior information or knowledge suggesting 

that the population standard deviation of weekly income in this industry is $400. 

Using the formula for estimating sample size for a population mean: 

𝑛 =
𝑧2. 𝜎2 

𝐸2
 

where Z = 1.96 (corresponding to the 95% confidence level); σ= $400 (population standard deviation); E= $50 

(margin of error)  

𝑛 =
𝑧1.962. 4002 

502
 

𝑛 = 245.8624 

Rounding up to the nearest whole number, the researcher would need a sample size of approximately 246 

employees to estimate the average weekly income of employees in the industry with a 95% confidence level and 
a margin of error of $50. 



Selecting The Right Sample Size: Methods And Considerations For Social Science Researchers 

DOI: 10.35629/8028-1307152167                                       www.ijbmi.org                                             159 | Page 

Example 2: Let us consider a more complex example where a researcher is conducting a study to estimate the 

average blood pressure of adults in a city. He wants to estimate this population mean with a 99% confidence level 

and a margin of error of 5 mmHg. Compute the sample size for the study.  

Solution: Since the researcher does not have any prior information or knowledge about the population standard 

deviation (𝜎). In such cases, researchers often use a conservative estimate or conduct a pilot study to estimate σ.  

Let us assume the researcher has conducted a pilot study and found that the sample standard deviation (𝑠) of blood 

pressure measurements was 15 mmHg. Using the formula for estimating sample size for a population mean when 

the population standard deviation is unknown: 

𝑛 =
𝑧2. 𝑠2 

𝐸2
 

where Z = 2.576 (corresponding to the 99% confidence level); s =15(sample standard deviation); E= 5 (margin of 

error)  

𝑛 =
𝑧2.5762. 152 

52
 

𝑛 = 59.8019 

Rounding up to the nearest whole number, the researcher would need a sample size of approximately 60 adults to 

estimate the average blood pressure of adults in the city with a 99% confidence level and a margin of error of 5 

mmHg, assuming a sample standard deviation of 15 mmHg. 

 

ESTIMATING THE DIFFERENCE BETWEEN TWO POPULATION MEANS 

Estimating the difference between two population means is a statistical procedure used when researchers 

want to compare the means of a continuous variable in two different populations or groups. This method is 

commonly employed in research studies to investigate whether there is a significant difference in the average 

values of certain characteristics, outcomes, or measures between two populations or groups. The equation used to 

estimate the required sample size for comparing two population means is based on the difference between the 

means (𝜇1−𝜇2) and is given by: 

 

𝑛 =
2(𝑍𝛼

2
 
+ 𝑍𝛽)2. 𝜎2

(𝜇1 − 𝜇2)2
 

Where: 

𝑛 is the required sample size for each group. 

𝑍𝛼

2
  is the critical value from the standard normal distribution corresponding to the desired significance level (𝛼/2). 

𝑍𝛽 is the critical value from the standard normal distribution corresponding to the desired statistical power (1−𝛽). 

σ is the common standard deviation of the populations. 

𝜇1 − 𝜇2 is the difference in the means of the populations or groups. 
This formula provides an estimate of the sample size needed in each group to detect a difference between the 

means with a specified level of significance and statistical power. A larger sample size generally leads to a smaller 

margin of error, providing more precise estimates of the difference between the population means. It is important 

to note that researchers typically use prior information, pilot studies, or literature reviews to estimate the common 

standard deviation (𝜎) and select appropriate values for the significance level (𝛼), statistical power (1−β), and 

desired difference in means (𝜇1 − 𝜇2) based on the research objectives and practical considerations. 

Example 1: Let us consider an example where a researcher wants to compare the effectiveness of two different 

teaching methods, Method A and Method B, in improving students’ test scores. He wants to estimate whether 

there is a significant difference in the average test scores between the two methods with a significance level of 

0.05 and a statistical power of 0.80.  Suppose you conducted a pilot study or reviewed previous research and found 

that the common standard deviation of test scores for both methods is 10 points (𝜎=10). He wants to detect a 

difference of at least 5 points (𝜇1 − 𝜇2 = 5) between the average test scores of the two methods. 

Solution  

Using the formula for estimating sample size for comparing two population means: 

𝑛 =
2(𝑍𝛼

2
 
+ 𝑍𝛽)2. 𝜎2

(𝜇1 − 𝜇2)2
 

where: 

𝑍𝛼

2
  =1.96 (corresponding to a significance level of 0.05) 

𝑍𝛽=0.84 (corresponding to a statistical power of 0.80) 

𝜎 =10 (common standard deviation) 

(𝜇1 − 𝜇2)=5 (difference in means) 
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𝑛 =
2(1.96 + 0.84)2. 102

(5)2
 

𝑛 = 62.72 

Rounding up to the nearest whole number, the researcher would need a sample size of approximately 63 students 
for each teaching method group to compare the effectiveness of Method A and Method B in improving test scores 

with a significance level of 0.05 and a statistical power of 0.80, assuming a common standard deviation of 10 

points and a difference in means of 5 points. 

Example 2: Let us consider a more complex example involving the comparison of the effectiveness of two 

different medications, Medication A and Medication B, in reducing blood pressure for patients with hypertension. 

A researcher wants to estimate whether there is a significant difference in the average reduction in blood pressure 

between the two medications with a significance level of 0.01 and a statistical power of 0.90. Suppose he has 

conducted a pilot study or reviewed previous research and found that the common standard deviation of blood 

pressure reduction for both medications is 12 mmHg (𝜎=12). He wants to detect a difference of at least 8 mmHg 

(𝜇1 − 𝜇2 = 8) in the average reduction in blood pressure between the two medications. 
Solution: Using the formula for estimating sample size for comparing two population means: 

𝑛 =
2(𝑍𝛼

2
 
+ 𝑍𝛽)2. 𝜎2

(𝜇1 − 𝜇2)2
 

where: 

𝑍𝛼

2
  =2.576 (corresponding to a significance level of 0.01) 

𝑍𝛽=1.282 (corresponding to a statistical power of 0.90) 

𝜎 =12 (common standard deviation) 

(𝜇1 − 𝜇2)=8 (difference in means) 

𝑛 =
2(2.576 + 1.282)2. 122

(8)2
 

𝑛 ≈ 46.5288 

 

Rounding up to the nearest whole number, the researcher would need a sample size of approximately 47 

patients for each medication group to compare the effectiveness of Medication A and Medication B in reducing 

blood pressure with a significance level of 0.01 and a statistical power of 0.90, assuming a common standard 

deviation of 12 mmHg and a difference in means of 8 mmHg. 

 

ESTIMATING THE DIFFERENCE BETWEEN TWO POPULATION PROPORTIONS 

Estimating the difference between two population proportions is a statistical procedure used when 

researchers want to compare the proportions of two categorical variables in different populations or groups. This 

method is commonly employed in research studies to investigate whether there is a significant difference in the 

proportions of certain characteristics, behaviours, or preferences between two populations or groups. 

The equation used to estimate the required sample size for comparing two population proportions is based on the 

difference between the proportions (P1 – P2) and is given by: 

𝑛 =
𝑧2. (𝑝1. (1 − 𝑝1) + 𝑝2.(1 − 𝑝2)

𝐸2
 

Where: 𝑛 is the required sample size for each group. 

𝑍 is the critical value from the standard normal distribution corresponding to the desired confidence level. 

P1 and P2 are the estimated proportions in each population or group. 

𝐸 is the desired margin of error or precision. 

This formula provides an estimate of the sample size needed in each group to detect a difference between the 

proportions with a specified level of confidence and precision. A larger sample size generally leads to a smaller 
margin of error, providing more precise estimates of the difference between the population proportions. It is 

important to note that researchers typically use prior information, pilot studies, or literature reviews to estimate 

the proportions (P1 and P2) and select an appropriate margin of error (𝐸) based on the research objectives and 

practical considerations. 

Example 1: Let us consider an example where a researcher wants to compare the proportions of adults who own 

smartphones in two different cities, City A and City B. He wants to estimate whether there is a significant 

difference in smartphone ownership between the two cities with a 95% confidence level and a margin of error of 

3%. Suppose the researcher has conducted a pilot study or reviewed previous research and found that 

approximately 60% of adults in City A own smartphones (p1 =0.60) and 55% of adults in City B own smartphones 

(𝑝2=0.55).  
Solution: Using the formula for estimating sample size for comparing two population proportions: 



Selecting The Right Sample Size: Methods And Considerations For Social Science Researchers 

DOI: 10.35629/8028-1307152167                                       www.ijbmi.org                                             161 | Page 

𝑛 =
𝑧2. (𝑝1. (1 − 𝑝1) + 𝑝2.(1 − 𝑝2)

𝐸2
 

Where, Z = 1.96 (corresponding to the 95% confidence level); p1 = 0.60(proportion in City A); p2 = 0.55 

(proportion in City B); E= 0.03 (3%margin of error) 

𝑛 =
1.962. (0.60. (1 − 0.60) + 0.55(1 − 0.55)

0.032
 

𝑛 = 2079.31 

Rounding up to the nearest whole number, the researcher would need a sample size of approximately 2080 adults 

in each city to compare the proportions of smartphone ownership between City A and City B with a 95% 

confidence level and a margin of error of 3%. 
Example: Let us consider a more complex example where the researcher wants to compare the proportions of 

patients who respond positively to two different treatments for a particular medical condition. The researcher 

wants to estimate whether there is a significant difference in treatment response rates between the two treatments 

with a 99% confidence level and a margin of error of 2%. Suppose you conducted a pilot study or reviewed 

previous research and found that approximately 70% of patients respond positively to Treatment A (𝑝1=0.70) and 

65% of patients respond positively to Treatment B (𝑝2=0.65). 

Solution  

Using the formula for estimating sample size for comparing two population proportions: 

𝑛 =
𝑧2. (𝑝1. (1 − 𝑝1) + 𝑝2.(1 − 𝑝2)

𝐸2
 

Where, Z = 2.576 (corresponding to the 99% confidence level); p1 = 0.70(proportion for treatment A); p2 = 0.65 

(proportion of treatment B); E= 0.02 (2%margin of error) 

𝑛 =
2.5762. (0.70. (1 − 0.70) + 0.65. (1 − 0.65)

0.022
 

𝑛 = 7248.1025 

Rounding up to the nearest whole number, the researcher would need a sample size of approximately 7249 patients 

for each treatment group to compare the proportions of positive treatment responses between Treatment A and 

Treatment B with a 99% confidence level and a margin of error of 2%. 

 

FOR SAMPLE SIZE IN SURVEY RESEARCH 

 

COCHRAN’S FORMULA 
Cochran’s formula is a widely used method to determine the appropriate sample size needed in survey research to 

ensure the results are statistically reliable and representative of the population being studied. This formula is 

particularly useful when the population size is large and the researcher aims to achieve a desired level of precision 

in estimating population proportions. The formula for Cochran’s sample size (𝑛) is given by: 

𝑛0 =
𝑧2. 𝑝. (1 − 𝑝)

𝐸2
 

Where: 𝑛 is the required sample size, 𝑍 is the critical value from the standard normal distribution corresponding 

to the desired level of confidence, 𝑝 is the estimated proportion of the population with the attribute of interest (or 

the maximum expected proportion if no prior estimate is available), 𝐸 is the desired margin of error or precision. 

Cochran’s formula allows researchers to determine the minimum sample size required to estimate a population 

proportion with a specified level of confidence and precision. A larger sample size leads to a smaller margin of 

error, providing more precise estimates of the population proportion. It is important to note that Cochran’s formula 

assumes simple random sampling from an infinite population or a large finite population with replacement. If the 
population size is relatively small and sampling without replacement is conducted, adjustments to the formula 

may be necessary using finite population correction factors. 

Example 1: A researcher is conducting a survey to estimate the proportion of adults in a city who supports a 

proposed environmental policy. He wants to estimate this proportion with a 95% confidence level and a margin 

of error of 3%. Suppose he does not have any prior information about the proportion of adults who support the 

policy in the city. In such cases, he can use a conservative estimate of 0.50 (50%) for 𝑝, assuming that the support 

for the policy is equally likely as not. 

Using Cochran’s formula: 

𝑛0 =
𝑧2. 𝑝. (1 − 𝑝)

𝐸2
 

Where: Z=1.96 (corresponding to the 95% confidence level); p=0.50 (conservative estimate) E=0.03 (margin of 

error of 3%) 

𝑛0 =
1.962. 0.5. (1 − 0.5)

0.032
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𝑛 ≈ 1067.11 

Rounding up to the nearest whole number, the researcher would need a sample size of approximately 1068 adults 

in the city to estimate the proportion of support for the environmental policy with a 95% confidence level and a 

margin of error of 3%. 

Example 2: Let us consider a more complex example where a researcher is conducting a survey to estimate the 

proportion of customers who are satisfied with a new product launched by a company. He wants to estimate this 

proportion with a 99% confidence level and a margin of error of 2%. Suppose the company has a large customer 

base, and he estimates that approximately 70% of customers are satisfied with the new product (𝑝=0.70). However, 
due to the importance of this survey and the desire for high precision, he wants to ensure a very small margin of 

error. 

𝑛0 =
𝑧2. 𝑝. (1 − 𝑝)

𝐸2
 

Where: Z=2.576 (corresponding to the 99% confidence level); p=0.70 (conservative estimate) E=0.02 (margin of 

error of 2%) 

𝑛0 =
2.5762. 0.7. (1 − 0.7)

0.022
 

𝑛 ≈ 5163.45 

Rounding up to the nearest whole number, the researcher would need a sample size of approximately 5164 

customers to estimate the proportion of satisfaction with the new product with a 99% confidence level and a 

margin of error of 2%. 
When the population size is unknown and you are estimating the population mean, Cochran's formula can be 

adapted for this scenario. The formula is: 

𝑛0 =
𝑧2. 𝜎2

𝑒2
 

where: 𝑛0 = the initial sample size, z = z-score (the number of standard deviations from the mean corresponding 

to the desired confidence level, e.g., 1.96 for 95% confidence), σ = estimated standard deviation of the population, 

e = desired margin of error (expressed as a decimal) 
Example: Suppose you want to determine the sample size for a survey where the population mean is estimated, 

with an estimated standard deviation σ of 10, a margin of error e of 2, and a confidence level of 95% (z = 1.96). 

Calculate the initial sample size 

𝑛0 =
𝑧2. 𝜎2

𝑒2
 

𝑛0 =
1.962. 102

22
 

𝑛0 = 96.04 

So, the required sample size would be approximately 96. 

 

THE SAMUEL B. GREEN FORMULA 

The Samuel B. Green formula (Green, 1991) is a heuristic used in multiple regression analysis to estimate the 
minimum sample size needed. Green proposed two different rules of thumb depending on whether you are 

interested in testing individual predictors or the overall model. 

For Testing Individual Predictors: 

𝑛 ≥ 104 + 𝑘 

where n is the sample size and k is the number of predictors. 

For Testing the Overall Model: 

n ≥ 50 + 8k 

where n is the sample size and k is the number of predictors. 

Example: Suppose you have 5 predictors: 

1. For Testing Individual Predictors: n  ≥ 104 + 5 = 109  
2. For Testing the Overall Model: n ≥ 50 + 8 × 5 = 50 + 40 = 90  

In this case, the researcher would choose the larger of the two estimates to ensure you have enough power to test 

both individual predictors and the overall model, so you would need a sample size of at least 109. 

 

NUNNALLY’S FORMULA (FOR SAMPLE SIZE IN SCALE DEVELOPMENT) 

Nunnally’s Formula is used in scale development to determine the sample size needed for conducting 

psychometric analyses, such as factor analysis, to assess the reliability and validity of a measurement instrument. 

It helps researchers ensure they have a sufficiently large sample to yield reliable results. The formula is based on 

the desired level of reliability (usually expressed as Cronbach’s alpha) and the number of items in the scale. It 
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assumes a normal distribution of responses and provides an estimate of the minimum sample size required to 

achieve a specified level of reliability. 

𝑛 =
𝑘

1 − 𝑟
 

Where: 𝑛 = the required sample size, 𝑘 = the number of items in the scale, 𝑟 = the desired reliability coefficient 

(typically Cronbach’s alpha). In this formula, 𝑟 represents the expected reliability of the scale. Researchers often 

set a threshold for the acceptable level of reliability, such as 0.70 or 0.80. 

For example, if a researcher has a scale with 20 items (k = 20) and you want to achieve a reliability of at least 

0.80 (r = 0.80), you can use the formula to calculate the required sample size: 

𝑛 =
20

1 − 0.80
 

𝑛 = 100 

So, according to Nunnally’s Formula, the researcher would need a minimum sample size of 100 participants to 

achieve a reliability of at least 0.80 for the scale with 20 items. 

Example 2: A researcher is developing a new scale to measure job satisfaction among employees in a large 

multinational company. His scale consists of 30 items designed to capture various aspects of job satisfaction. He 

aims to achieve a reliability coefficient (Cronbach’s alpha) of at least 0.85 for the scale. Using Nunnally’s Formula, 
determine the minimum sample size required for the study. 

Solution: Number of items in the scale (𝑘) = 30; Desired reliability coefficient (𝑟) = 0.85 

𝑛 =
30

1 − 0.85
 

𝑛 = 200 

So, according to Nunnally’s Formula, the researcher would need a minimum sample size of 200 participants to 

achieve a reliability of at least 0.85 for the job satisfaction scale with 30 items. 

 

YAMANE’S FORMULA 

Yamane’s formula is a straightforward method used for determining sample sizes in survey research, particularly 

in social science studies where the population size is known or easily determinable. It is commonly used in 

situations where researchers want to obtain a representative sample from a large population. The formula was 
proposed by S. Yamane in his book “Statistics: An Introductory Analysis” (1967). 

𝑛 =
𝑁

1 + 𝑁𝑒2
 

Where: 𝑛= sample size, 𝑁= population size, 𝑒 = margin of error (expressed as a proportion, usually between 0 and 

1) 

Yamane’s formula assumes a simple random sampling method and is based on the population size and the desired 
margin of error for the sample estimate. The margin of error represents the acceptable amount of variability 

between the sample estimate and the true population parameter. 

Example: Suppose a researcher wants to conduct a survey on a university campus with a total student population 

of 10,000 students. They aim to achieve a margin of error of 0.05 (5%). 

𝑛 =
𝑁

1 + 𝑁𝑒2
 

Using Yamane’s formula: 

𝑛 =
10,000

1 + 10,000 x 0.052
 

𝑛 ≈ 385 

So, according to Yamane’s formula, the researcher would need a sample size of approximately 385 students to 
achieve a margin of error of 5% in their survey. 

Example 2: A nonprofit organization is conducting a survey to assess the satisfaction levels of citizens regarding 

the quality of healthcare services in a large city. The city has a total population of 500,000 residents. The 

organization wants to ensure a representative sample with a margin of error of no more than 2%. They plan to use 

Yamane’s formula to determine the required sample size for their survey. 

Solution  

Population size (𝑁) = 500,000; Margin of error (𝑒) = 0.02 (2%):  

Using Yamane’s formula: 

𝑛 =
𝑁

1 + 𝑁𝑒2
 

𝑛 =
5,00,000

1 + 5,00,000 x 0.022
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𝑛 =
𝑁10,000

1 + 10,000 x 0.052
 

𝑛 ≈ 2,487.56 

So, according to Yamane’s formula, the nonprofit organization would need a sample size of approximately 2,488 

residents to achieve a margin of error of 2% in their survey. However, since the calculated sample size is not a 

whole number, the organization must decide whether to round up or down. Rounding up to the nearest whole 

number ensures a slightly larger sample size, providing additional assurance in the survey’s representativeness 

and reliability. Therefore, the organization might decide to round the sample size up to 2,488 participants. 

The adjusted Yamane formula incorporating the population variance (π) and the z-score (z) for a given significance 

level (α) is designed to increase accuracy, especially for dichotomous variables. The modified formula is: 

𝑛 =
𝑁. 𝑧2. 𝜋(1 − 𝜋)

𝑁. 𝑒2 + 𝑧2. 𝜋(1 − 𝜋)
 

where: n = sample size, N = population size, z = z-score corresponding to the desired confidence level (e.g., 2 for 

α=0.05, 3 for α=0.01), 𝜋 = population variance (for a dichotomous variable, typically π=0.50, e = margin of error 

(expressed as a decimal) 

Example Calculation: Suppose you have a population size N of 10,000, a margin of error e of 5% (0.05), a 

population variance π of 0.50, and you want to use a z-score of 2 (for α=0.05). 

𝑛 =
10000. 22. 0.50(1 − 0.50)

10000. 22 + 22. 0.50(1 − 0.50)
 

𝑛 ≈ 384.56 

So, the required sample size would be approximately 385. 

 

KREJCIE AND MORGAN’S TABLE 

Krejcie and Morgan’s Table is a widely used statistical tool for determining the appropriate sample size for a 

survey or research study based on a given population size. It was developed by Robert V. Krejcie and Daryle W. 
Morgan in their 1970 paper, "Determining Sample Size for Research Activities," published in the journal 

Educational and Psychological Measurement. The table provides a quick reference for researchers to ensure that 

their sample is large enough to yield statistically significant results. 

 

KEY CONCEPTS OF KREJCIE AND MORGAN’S TABLE 

Population Size (N): This refers to the total number of people or units in the group being studied. 

Sample Size (S): This is the number of people or units selected from the population to participate in the study. 

Confidence Level: Typically, a confidence level of 95% is used, which means that if the same population were 

sampled multiple times, the sample mean would fall within the confidence interval 95% of the time. 

Margin of Error (e): This is the range within which the true population parameter is expected to fall. It is often set 

at 5%, indicating a 95% confidence level. 

 

HOW THE TABLE WORKS 

Population Size (N): The table lists population sizes in one column. 

Sample Size (S): The corresponding recommended sample sizes are listed in an adjacent column. 

The sample sizes provided in the table are calculated based on the formula for sample size determination for a 

given level of precision, confidence, and variability. The formula used is: 

𝑆 =
𝑋2. 𝑁. 𝑃. (1 − 𝑃)

𝑑2. (𝑁 − 1) + (𝑋2. 𝑃. (1 − 𝑝)
 

Where: 𝑆=is the required sample size, 𝑋2 is the chi-square value for the desired confidence level (e.g., 1.96 for 

95% confidence), N is the population size, 𝑃 is the population proportion (assumed to be 0.5 for maximum sample 

size), 𝑑 is the degree of accuracy (the margin of error, e.g., 0.05 for ±5%). 

 

PRACTICAL APPLICATION 

Ease of Use: Researchers can simply look up the population size in the table and find the corresponding sample 

size without performing complex calculations. 

Accuracy: The table ensures that the sample size is sufficient to make reliable inferences about the population. 

Standardization: It provides a standardized method to determine sample size, promoting consistency across 
different studies. 

Example: Imagine you are conducting a survey to understand the job satisfaction levels of employees at a large 

corporation. The total number of employees at the corporation (population size, 𝑁) is 1,200. Using Krejcie and 

Morgan’s Table: 

Population Size (N): Find the row in the table that corresponds to a population size of 1,200. 

Sample Size (S): Look at the recommended sample size for a population of 1,200. 
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According to Krejcie and Morgan’s Table, for a population size of 1,200, the recommended sample size (S) is 

approximately 291. This is the number of employees you need to survey to obtain statistically significant results 

with a 95% confidence level and a margin of error of ±5%. 

𝑆 =
𝑋2. 𝑁. 𝑃. (1 − 𝑃)

𝑑2. (𝑁 − 1) + (𝑋2. 𝑃. (1 − 𝑝)
 

Parameters: N= 1,200; 𝑋2 ≈3.841 (for 95% confidence level); P=0.5 (population proportion, for maximum 
variability); d=0.05 (degree of accuracy, or margin of error) 

 

𝑆 =
3.8412. 1200.0.5. (1 − 0.5)

0.052. (1200 − 1) + (3.841. 0.5 . (1 − 0.5)
 

𝑆 = 291 

A CONFIDENCE INTERVAL AND CONFIDENCE LEVEL 

A confidence interval is a range of values, derived from sample statistics, that is likely to contain the 

value of an unknown population parameter. For example, if we are trying to estimate the average height of people 

in a city, we might take a sample of 100 individuals and calculate the average height from that sample. The 

confidence interval gives us a range of heights within which we are reasonably confident the true average height 

of the entire city population lies. 

Confidence Level: The confidence level is the probability that the confidence interval does contain the 

population parameter. It is often expressed as a percentage, like 95% or 99%. For instance, a 95% confidence level 

means that if we were to take 100 different samples and compute a confidence interval for each sample, then 

approximately 95 of the 100 confidence intervals would contain the true population parameter. A z-score, also 

known as a standard score, is a statistical measure that indicates how many standard deviations a data point is 

from the mean of a dataset. It is calculated by subtracting the mean of the dataset from the data point and then 

dividing by the standard deviation. A z-score of 0 indicates that the data point is exactly at the mean of the dataset. 
Positive z-scores indicate data points above the mean, while negative z-scores indicate data points below the mean. 

The further the z-score is from 0, the more unusual or extreme the data point is relative to the rest of the dataset. 

In the context of confidence intervals, z-scores are used to determine the critical values for constructing confidence 

intervals when the population standard deviation is known. The z-score associated with a given confidence level 

corresponds to the number of standard deviations away from the mean that captures a certain percentage of the 

data in a normal distribution. The following is the formula to compute the Z score  

𝑧 =
𝑥 − 𝜇

𝜎
 

These z-scores are used to calculate the margin of error and construct confidence intervals around sample statistics. 
The higher the confidence level, the wider the confidence interval will be, because we want to be more certain 

that it contains the true population parameter. 

Confidence Level z-score (±) 

0.7 1.04 

0.75 1.15 

0.8 1.28 

0.85 1.44 

0.92 1.75 

0.95 1.96 

0.96 2.05 

0.98 2.33 

0.99 2.58 

0.999 3.29 

0.9999 3.89 

0.99999 4.42 

Source: https://www.calculator.net/sample-size-calculator.html 

 

IV. DISCUSSION AND CONCLUSION  
Sampling is a cornerstone of research in the social sciences, enabling researchers to make inferences 

about populations based on data collected from a subset. The primary goal of sampling is to ensure that the sample 
accurately represents the larger population, which is essential for the validity and reliability of the research 

findings. The choice of sampling method significantly impacts the quality and generalizability of the research 

outcomes. Random sampling, which includes methods like simple random sampling and systematic sampling, 
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ensures that each member of the population has an equal chance of being included in the sample. This randomness 

helps minimize selection bias, making the sample more representative of the population (Groves et al., 2018). 

However, in practical settings, achieving perfect randomness can be challenging, especially in large and diverse 

populations. Stratified sampling enhances the representativeness of the sample by dividing the population into 

distinct subgroups and sampling from each subgroup (Kozak et al., 2021). This approach is beneficial when 

researchers aim to ensure that specific subgroups within the population are adequately represented. For instance, 

stratified sampling can improve the precision of estimates for minority groups that might otherwise be 

underrepresented in a simple random sample. Cluster sampling, on the other hand, is particularly useful for 

geographically dispersed populations (Valliant et al., 2020). By dividing the population into clusters and sampling 
entire clusters, researchers can reduce the logistical and financial burden of data collection. While this method can 

be more cost-effective, it may introduce additional variability if clusters are not homogeneous, potentially 

affecting the precision of the estimates. Non-probability sampling methods, such as convenience sampling and 

purposive sampling, are often employed when random sampling is impractical or when the research aims to 

explore specific phenomena in-depth (Etikan et al., 2016). These methods can provide valuable insights, 

particularly in exploratory research, but they may lack the generalizability of probability-based methods. Recent 

trends in sampling reflect advancements in technology and data collection techniques. Big data and computational 

methods have introduced new possibilities for sampling from large and complex datasets. Machine learning 

algorithms and data mining techniques allow researchers to analyze vast amounts of data and refine their sampling 

strategies, enhancing both efficiency and accuracy (Kang et al., 2020). Adaptive sampling methods are gaining 

traction, especially in dynamic research contexts where conditions change during the study. These methods adjust 

sampling strategies based on interim findings, improving the focus and relevance of the research (Thompson & 
Seber, 1996).  For example, adaptive cluster sampling can concentrate resources on areas with higher variability 

or importance, optimizing the research process (Morstatter et al., 2013). The rise of online platforms and social 

media has also transformed sampling practices. Researchers are increasingly using web-based tools and social 

media analytics to reach diverse and large populations. While these methods offer new opportunities for data 

collection, they also pose challenges related to representativeness and data quality. Addressing these challenges 

requires careful consideration of the sample’s composition and potential biases. Integrative sampling approaches, 

which combine multiple sampling methods, reflect a sophisticated trend in contemporary research. By leveraging 

the strengths of different methods, researchers can address various aspects of sampling challenges and enhance 

the robustness of their findings. For instance, combining stratified and cluster sampling can balance precision and 

cost-efficiency, providing a more comprehensive view of the population. 

Sampling methods are fundamental to the practice of social science research, influencing the accuracy 
and generalizability of study findings. Traditional methods, such as random, stratified, and cluster sampling, 

provide robust frameworks for ensuring representative samples and minimizing bias. However, emerging trends 

in technology and data collection are expanding the possibilities for sampling, offering new tools and techniques 

to handle large and complex datasets. The integration of computational methods, adaptive sampling, and online 

data collection represents significant advancements in the field. These innovations enhance the ability to capture 

diverse and dynamic populations, addressing some of the limitations of traditional methods. Researchers must 

stay abreast of these developments and select sampling strategies that align with their research objectives and 

contexts. Ultimately, the choice of sampling method should be guided by the research goals, the nature of the 

population, and the available resources. By applying both established and innovative sampling techniques, 

researchers can improve the validity and relevance of their findings, contributing valuable insights to the field of 

social sciences. 
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