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ABSTRACT:In all business sectors, decision-making is crucial and frequently requires drawing conclusions 

from data. As a result, it is essential to employ statistical tools when extracting knowledge from data.However, 

there is no one size fits all approach to applied inference research. It is important thatdecision makers 

understand their options, including the advantages and disadvantages of eachapproach. Fisher's test of 

significance, Neyman-Pearson’s test of acceptance, null hypothesis significance testing (NHST), and Bayesian 

approach, are the four major choices when it comes to hypothesis testing. Each of them is briefly discussed in 

this paper. This is intended to be a concise summary of these methodologies so that decision makers may better 

understand the ideas, use the right strategy in every circumstance, and critically assess the data's findings. 
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I. INTRODUCTION 

Several statistical solutions are at the disposal of the researcher to solve problems of inductive 

inference. From these options, the researcher chooses the one or the ones that best suit the research problem that 

he wants to address. There is no single solution to all problems [1]. Therefore, it is helpful to be aware of the 

different options available. This paper provides a short description of the most prevalent types of data testing, in 

particular, Fisher’s test of significance, Neyman-Pearson’s test of acceptance, null hypothesis significance 

testing (NHST), and Bayesian approach to data testing. 

 

II. FISHER’S TEST OF SIGNIFICANCE 

According to Fisher [2], every experiment may be conducted with the aim of disproving the null 

hypothesis 𝐻0. Fisher created the so-called null hypothesis significance testing theory, a tool that should only be 

used for problems about which there is little or no knowledge. When one knows relatively little about a 

problem, this is the case [3]. The purpose is to use probability calculations to evaluate evidence. 

As stated by Fisher's null hypothesis testing (Fisher’s test of significance), only one hypothesis must be 

defined, the null hypothesis 𝐻0, with no expressly stated alternative hypothesis 𝐻1(albeit implicitly). It is called 

null hypothesis testing because the hypothesis must be nullified with research data, to be able to explain it [4]. It 

does not even have to be a null hypothesiswhich always equals zero(such as equal means among groups or zero 

correlation).  

In contrast to the Newman-Pearson approach to data testing, Fisher's approach to significance testing 

allows all steps of the technique to be established a posteriori, after the data has been gathered [5,6].The process 

involves calculating the theoretical probability of obtaining data as least as extreme as the one observed, 

assuming the null hypothesis 𝐻0is true. This probability is called the p-value. That is, p-value = 𝑃(𝑥 + |𝐻0), 
where 𝑥 + denotes the data collected or even more extreme. The definition means that the same set of data can 

assign different p-values depending on the study sampling design[7,8]. It is also worth noting that, if the 

experiment is repeated, the p-value cannot be regarded as an error rate. It applies only to the actual data.  

The purpose of this test is to obtain a statistically significant result. The significance of the result means 

that its p-value is low, which means that the dataare unlikely to have occurred by random variation alone, and 

therefore can be considered evidence against the null hypothesis. It is up to the researcher reporting the actual p-

value to decide how little the p-value must be to be statistically significant. The p-value is frequently compared 

to a specified threshold. The p-value threshold used to reject the null hypothesis is known as the significance 

level. This significance level does not have to be fixed. It can be changed later on.  

A significant result indicates that a rare occurrence happened or that 𝐻0fails to explain the data. As a 

result, the lower the p-value, the stronger the evidence against the null hypothesis [5,6,9]. Nonetheless, because 
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a low p-value says nothing about the evidence against any other hypothesis, the p-value might overestimate the 

evidence against 𝐻0. Furthermore, the p-value does not answer the real question of inductive inference: how 

credible is the research hypothesis (implicit alternative hypothesis) in light of the data? [10].Another 

disadvantage of the p-value is that it ignores the magnitude of the effect. A tiny effect in a large sample size 

study can have the same p-value as a substantial effect in a small sample size study [8]. 

Fisher's technique does not include statistical power or effect size (described in the next chapter), 

which is an important aspect to underline. Furthermore, the availability of one single hypothesis is the most 

fundamental testing limitation since it prevents comparison testing of competing hypotheses. As a result, 

symmetrical comparison of two or more hypotheses is impossible. 

Following is a summary of the processes involved in Fisher's null hypothesis testing: one starts by 

constructing a statistical null hypothesis, which typically denotes the lack of an effect. The real p-value is then 

computed and provided so that a judgment can be made. The strength of the evidence against the null hypothesis 

is stated rather than being accepted or rejected [4]. Having strong evidence against the null hypothesis does not 

mean that the alternative is true. A replication of the study is required. 

 

III. NEYMAN-PEARSON’S TEST OF ACCEPTANCE 

The idea of Neyman and Pearson [11] is that the truth or falsehood of a hypothesis cannot be 

determined by any test based on a theory of probability on its own, however, one can look for guidelines to 

adhere to in order to make sure that the choice is not frequently wrong in the long run [11]. 

In contrast to Fisher's method, Neyman-Pearson's method focuses on choosing amongst competing 

hypotheses rather than eliminating a hypothesis [6]. In addition to the central hypothesis 𝐻𝑀(which is very 

similar to Fisher's null hypothesis and is also referred to as the null hypothesis), there is an alternative 

hypothesis𝐻𝐴 . Neyman-Pearson's approach utilizes long-run error probabilities as opposed to Pearson's method 

use of evidence to reject the null hypothesis [12].Some steps of the Neyman-Pearson approach must be 

established a priori [4,5,6].  

When testing the hypotheses, there are two errors that can be made: the type I error, which involves 

rejecting the central or null hypothesis when it is true, and the type II error, which involves rejecting the 

alternative hypothesis when it is true. The probability of making a type I error is called alpha (α), and the 

probability of making a type II error is called beta (β). The power of the test (1− 𝛽),is the probability of 

rejecting correctly the central or null hypothesis when it is false.   

Unlike Fisher's method, Neyman-Pearson’ data testing incorporates the concept of effect size [6]. An 

effect size is a measurement of anything of interest that is typically a standardized indicator of the strength of 

the effect, though it can also be expressed in the original units. It is a metric that is not dependent on sample 

size. Even so, the sample size can have an impact since larger samples produce more accurate estimates of the 

population effect size. The effect size must be established a priori. The effect size provides information on the 

probability of committing a type II error (β). The portion of the central hypothesis 𝐻𝑀 that one does not wish the 

test to reject is represented by the minimal effect size. In other words, it includes values that are not of relevance 

to study but are desired to fall within the central hypothesis [6]. Values beyond this minimal effect size are those 

that are thought to be significant for research.The main distinction between the central hypothesis of Newman 

and Pearson and the null hypothesis of Fisher is that the former incorporates any value below the minimum 

effect size to be captured by the test (effect sizes are not part of Fisher's approach), and is one of two competing 

hypotheses to be tested. 

The alpha level (𝛼), which is the probability of making a type I error in the long run, is fixed a priori 

[4,6]. Long run refers to repeated similar tests over which one can anticipate rejecting the correct central or null 

hypothesis in approximately𝛼 × 100% of cases, but it does not apply to a single research.Keep in mind that the 

p-value for Fisher and the alpha level (α) for Neyman-Pearson are not the same thing. The focus of Neyman-

Pearson's approach is on choosing which hypothesis to accept, not on the strength of the evidence against the 

null hypothesis. The alpha level must be decided upon beforehand and does not admit gradation.  

Based on the probability distribution of the statistical test under the null hypothesis, the value of 𝛼 

assists in drawing a critical region or rejection region of the central hypothesis 𝐻𝑀 . One accepts the alternative 

hypothesis 𝐻𝐴if the test value is inside the critical zone. One accepts the central hypothesis 𝐻𝑀 if the test value is 

outside the critical zone, for a test's power (1 − 𝛽)adequate; otherwise, no conclusion may be drawn [6].For the 

test to have a good power, the sample size n needs to be calculated beforehand. Note that in Neyman-Pearson's 

testing, the p-value has only one purpose: to serve as a marker for choosing among the hypotheses [6]. 

Neyman-Pearson’s data testing can be summarized as follows: two statistical hypotheses, 𝐻𝑀and 𝐻𝐴are 

created. According to 𝐻𝐴 , define the effect size that is considered important. Set the values for the errors 𝛼and 𝛽 

and determine the sample size n in advance (by employing suitable software). Then the experience is carried 

outand the data is analyzed, and one of the hypotheses is accepted, without any assessment of the veracity of any 

of the hypotheses. 
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IV. NULL HYPOTHESIS SIGNIFICANCE TESTING (NHST) 

The most commonly used method for testing hypotheses is the so-called Null Hypothesis Significance 

Testing (NHST). It combines Fisher's and Neyman-Person’s techniques, but it is not well defined and could lean 

more in one direction than the other. It emerged from these two opposing perspectives on the problem of how to 

employ data to test hypotheses and seeks to determine whether or not the alternative hypothesis 𝐻1is most likely 

to be accurate. 

NHST can be applied, for instance, while performing a significance test using Neyman-Pearson’s 

principles, by adjusting the alpha level (𝛼) (probability of making a type I error) to match the observedp-value. 

However, Fisher's method is the one that comes closest to the NHST despite the inclusion of an alternative 

hypothesis.Although they are not required in NHST, effect size and 𝛽(probability of making a type II error) 

must be considered when deciding the a priori sample size nto achieve high power (1 − 𝛽), even though 

statistical power is not typically taken into account. 

NHST is often carried out as follows: the statistical null hypothesis of no effect is first established. The 

p-value is then calculated according to the alternative hypothesis, and the conventional threshold for rejecting 

the null hypothesis is usually 5% significance. The result is deemed significant and the alternative hypothesis is 

accepted if the p-value is less than the significance level of 5%.Otherwise, no conclusions can be drawn. 

The information provided by the p-value is poor. Although it reveals nothing about the data under the 

alternative hypothesis 𝐻1, a low p-value indicates that it is unusual under the null hypothesis 𝐻0. Results are 

typically viewed as final in NHST since a significant result is frequently interpreted as proving the alternative 

hypothesis [6]. These conclusions may have negative effects [13]. Interpreting the p-value is overstated in many 

studies. A low p-value or significant finding does not necessarily indicate that the effect is pertinent or of 

practical significance. Significant results or p-values cannot be used to determine which hypothesis is true. Keep 

in mind that p-values do not provide information on the size or accuracy of the effect measured [14].The p-

values must be reported along with power and effect size information or with confidence intervals since, unlike 

effect sizes, they depend on sample size. 

 

V. BAYESIAN APPROACH 

A crucial feature of Bayesian statistical approache is the inclusion of prior beliefs before collecting 

data. Prior distribution, which is required initially before data collection, is a probability distribution of 

parameter values. In Bayesian inference, these parameter values acquire a new level of credibility consistent 

with the data gathered; this new level of credibility is known as the posterior distribution. 

NHST can only reject the null hypothesis. On the contrary, Bayesian testing can accept or reject the 

null hypothesis. By using Bayesian inference, parameter estimation is possible in addition to model comparison 

and hypothesis testing. In contrast to the other procedures, Bayesian inference involves assigning probabilities 

to parameters and models. In a nutshell, Bayesian statistic relies on Bayes' rule and probability theory, and 

therefore allows one to change prior beliefs in light of additional evidence, answering a crucial topic that is not 

addressed by other methods, namely, the probability of the hypotheses given the information that have been 

collected. 

Unlike other procedures in which the p-value is calculated, the Bayesian approach uses the Bayes 

factor developed by Jeffreys [15]. The Bayes factor measures the extent to which data are more likely under one 

hypothesis than under another, allowing a quantitative comparison of the predictive performance of data for the 

null hypothesis 𝐻0and that of the alternative hypothesis 𝐻1[15,16]. For two hypotheses 𝐻0and 𝐻1, two 

equivalent Bayes factors arise from the ratio of probabilities (p may denote a probability or a probability density 

function, depending on the event): 

𝐵𝐹10 =
𝑝 𝑥|𝐻1 

𝑝 𝑥|𝐻0 
 

𝐵𝐹01 =
𝑝 𝑥|𝐻0 

𝑝 𝑥|𝐻1 
=

1

𝐵𝐹10
 

As a result, a Bayes factor 𝐵𝐹01  greater than one denotes that the null hypothesis is more likely to 

explain the data than the alternative hypothesis, and a Bayes factor 𝐵𝐹01less than one denotes the opposite. 

Therefore, if the Bayes factor 𝐵𝐹01  equals𝑦, the data predict the null hypothesis 𝑦 times more accurately than 

the alternative hypothesis, meaning that the likelihood of the data is 𝑦 times higher under 𝐻0than under 𝐻1. 

A disadvantage of the Bayes factor for an alternative composite hypothesis is that it is dependent on the 

prior distribution of the parameter under 𝐻1. A two-sample t-test serves as an illustration, where 𝐻0assigns a 

null effect size that denotes the null difference between two means in the population, 𝜇1 − 𝜇2 = 0, and the 

alternative hypothesis 𝐻1is given by a range of values of𝜇1 − 𝜇2, like𝜇1 − 𝜇2 ≠ 0, which presupposes that the 

effect is present and it is necessary to assign a distribution to it that accounts for the uncertainty regarding the 

effect size's actual true value in the population (given by the difference between the two means). In the event 
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that 𝐻0is true, all of its probability is concentrated at one location, 𝜇1 − 𝜇2 = 0. When 𝐻1 is true, 𝜇1 − 𝜇2 has an 

undetermined value, and a conditional probability distribution is established over all possible values. 

However, the minimum Bayes factor𝐵𝐹01(MBF), which is the lower bound of𝐵𝐹01 , represents the 

strongest evidence against the null hypothesis, and does not rely on the prior [17]. It is the lowest across all the 

odds of the data likelihood of 𝐻0to 𝐻1. The alternative hypothesis' prior distribution is concentrated at the data's 

maximum likelihood estimate to produce it [17].The greatest amount of evidence is shown against the null 

hypothesis by the smallest Bayes factor. 

As a unique feature, the Bayes’ rule (unlike the p-value) allows the posterior probability of any 

hypothesis𝑃 𝐻|𝑥 ,to be computed (𝐻 is any of the hypotheses, 𝑥means data): 

 

𝑃 𝐻0|𝑥 =
𝑃 𝑥|𝐻0 

𝑃 𝑥 
× 𝑃 𝐻0  

𝑃 𝐻1|𝑥 =
𝑃 𝑥|𝐻1 

𝑃 𝑥 
× 𝑃 𝐻1  

The posterior odds are therefore calculated as the product of the Bayes factor and the prior odds 

(posterior probabilities are then calculated for each hypotheses): 

 
𝑃 𝐻0|𝑥 

𝑃 𝐻1|𝑥 
=

𝑝 𝑥|𝐻0 

𝑝 𝑥|𝐻1 
×

𝑃 𝐻0 

𝑃 𝐻1 
 

 

VI. CONCLUSION 

When there is only one hypothesis and one wants to assess the strength of the evidence against it using 

new data, Fisher's method may be appropriate. The Neynman-Pearson’s technique, on the other hand, is 

recommended when one wants to make a decision in dichotomous terms. The NHST can be used for the same 

objective, but the power of the test and the size of the effect must be considered. In contrast to Fisher’s 

technique and generally also in NHST, the p-value just acts as a proxy in Newmann-Pearson strategy to make a 

decision. 

The p-value is based both on the data that have been observed and on more extreme data that have not 

been reported. In light of this, p-values may depend on the experiment's design and stopping criteria. The p-

value for the same data may change if the design is modified.Furthermore, the p-value merely assesses the 

degree to which the data (including more extreme one) support the null hypothesis. It does not measure the 

predictive performance of the data for the alternative hypothesis. 

The Bayesian technique, on the other hand, focuses on updating prior information about the nonzero 

effect size using the posterior distribution. The Bayes factor compares the prediction effectiveness of two 

competing models or hypotheses and provides the relative strength of each. Therefore, only estimation and 

interpretation are used instead of drawing binary judgments. The use of a prior, which is a subjective judgement, 

is the main criticism of Bayesian statistics [16,18]. However, Ly, Raj et al. [18]show that the evidence for a 

particular data set is limited and that even with an unrealistic prior distribution, it is not possible to uncover as 

much evidence as desired.Nevertheless, when the sample size nincreases, the prior's effect fades [19]. Overall, 

as sample size increases, the prior choice becomes less important and the estimated impact size's precision rises 

[19]. The posterior distribution from one study can be used as a prior distribution for subsequent investigations, 

which is another benefit of using Bayesian analysis to analyze the data.  
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