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Abstract:A known complex problem: Single Track Train Scheduling Problem is formulated as a mixed-integer 

program in which, unmet demand was minimized as the objective. The model was solved for various runtime 

limitations. “Runtime-Distance From Optimal Solution” tuples was used to form an efficient frontier and via 

Data Envelopment Analysis the trade-off decision identified as the most productive scale size was suggested to 

the decision maker as the most efficient trade-off between runtime and distance from optimal solution. 
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I. INTRODUCTION 

The Single Track Train Scheduling Problem is a special type of Public Transport SchedulingProblem, 

which is defined as a system that operates on a single line, generally to minimize the total waiting time [1]. 

The first optimization study on train timetabling was introduced by Amit and Goldfarb in 1971 [2]. The 

following studies focused on different objectives on the problem: trip time[3], total waiting time[4], demand[5], 

delay time[6] and reliability[7].There are studies[8] that use multiple objectives. Some studies [9] focused on 

non-linear models. And, some [10] focused on heuristic methods. This paper has a single objective and that is to 

minimize unmet demand using a mixed integer programming model and implementing a second objective which 

is optimizing the solution time-sub optimality trade off. 

The size of a decision problem is defined by the number of interacting variables, by the number and the 

structure of the constraints that limit the range of the values that those variables can take. The solution time of 

the single-track train scheduling problem does increase by a non-deterministic polynomial function as the size of 

the problem increase. In other words the problem is a non-deterministic polynomial time (NP) class decision 

problem. [11] 

Due to the complexity of the problem previous studies often adopted meta heuristic methods[12].This 

paper offers a dual process approach. First a mixed integer program is used to obtain different optimality gap 

results under different runtime limitations. And then, the runtime-optimality gap tuples are used to form a best 

practice frontier[13] and the trade off performance is analyzed via data envelopment analysis. Finally the most 

productive scale size is identified and declared as the best trade off decision. 

This study consists of six sections considering the introduction as the first section. Second section is the 

methodology part which includes the three models used in this paper. In the third section results of the models 

are presented. Forth section is the conclusion part where the results are evaluated. Fifth section is the discussion 

section in which the limitations of this study was discussed and suggestions for further research in the area of 

decision making are given. The sixth and the last section is dedicated for the references that fueled this study. 

 

II. METHODOLOGY 

Single track train scheduling problem, here in this paper, aims to identify the optimal train schedule 

that minimize the total unmet demand [14]. The problem is formulated both as a linear programming model 

(here after to be referred as LP) and a mixed-integer programming model (here after to be referred as MIP). 

Due to the complexity of the problem MIP optimal solution is not attainable within reasonable runtimes 

of the solver algorithm. So the MIP is solved under various runtime limitations, hence various sub-optimal 

results with various optimality gaps are obtained. To define the optimality gap of MIP results LP optimal 

solution is assumed to be the MIP optimal solution. 

It is observed that the Optimality Gap-Runtime tuples constitute a trade-off decision: “How much time 

does a public transport system has to invest to achieve a higher service level with a schedule?”. To performs a 

trade off analysis Data Envelopment Analysis served as the right tool. Input Oriented CCRmodel[15]is solved to 
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identify the Most Productive Scale Size (MPSS) [16] within the best practice frontier [17] which is represented 

by the Optimality Gap-Runtime tuples, the Decision Making Units (DMUs). 

 

2.1. The Linear Programming Model 

The LP model constitutes 284 parameters, 376 variables and 6 classes of constraints and a single objective. 

2.1.1. Sets 

Set of stations: 

                                
Set of train runs: 

                                 
2.1.2. Parameters 

                             
                                                  

  
                                                                        

    
                                                                                                

                                                                
                                                               

                                            

2.1.3. Hypothetical Data Set 

     is assumed to be homogeneous and 120 for all train runs and between every station.  

Incoming passenger rate for the stations are respectively     ,     ,    ,     ,     , 0. 

The ratio of on board passengers that would leave at the     station to total passengers on board is a random 

number between 0 and 1 for all stations. 

Values of   ,    and,   are respectively 18, 27 and, 90. 

2.1.4. Variables 

 

    
                                                                            

    
 
                                                                        

                             
                                

                       

    
                                         

    
                                                   

                                         
                             

    
                                                                               

                                     
         

  
                                                                               

  
                                                                                     

                                        
                        

                                              
                        

                                           
                                                 

2.1.5. Constraints 

The linear programming model has six group of constraints. 

2.1.5.1. Waiting Constraints 

         
      

 
            (1) 

2.1.5.2.Headway Constraint 

   
      

 
   

  
   

 
 
      

 
   

    
   

 
      (2) 

2.1.5.3. Time Constraints: 

         

    
   

                                                                     

              
 

   
       

   

   
         

  
              (3) 

 

         
      
      

       
           (4) 

               (5) 
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        (6) 

2.1.5.4. Wagon Constraints 
 

  
     

 
  

   
    

       (7) 

 

   
 

  
     

 
  

   
    

             (8) 

 

     
    

         (9) 

 

  
             (10) 

 

  
             (11) 

 

2.1.5.5. Conservation of Flow Constraints 

            (12) 

 

             (13) 

   

                    (14) 

   

          
                       

           (15) 

                     (16) 

         
 
               (17) 

            (18) 

              (19) 

                    (20) 

          
         

         
           (21) 

         
                (22) 

            (22) 

             (23) 

 

          
                                                                        

           (24) 

          
                      

           (25) 

         
    

       (26) 

    
                       (27) 

          

          
        

     
        

  
           (28) 

2.1.5.6. Non-negativity Constraints 

          
 
      

                                                                            (29) 

 

     (30) 

 

    
      

               (31) 

 

      
     

         (32) 

                            
               (33) 
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2.1.6. Objective Function 

           
 

 

   

 

   
  (34) 

[18][19] 

2.2. The Mixed-Integer Programming Model 

The LP model is impractical due to unrealistic fractional values of the variables. Despite this handicap 

the LP model is also advantageous, since the problem size increases the solution time by a polynomial function 

and thus the solver algorithm can very effectively find the solution in insignificantly small times. 

On the other hand, the MIP model is more realistic and applicable. But the optimal solution is not 

attainable in reasonable times. With some runtime limitations to the solver algorithm, some sub-optimal 

solutions to the problem can be attained. 

The MIP model will not be openly represented in this paper due to the similarity with the LP model.  

Technically the MIP and the LP models have the same parameters, same constraints and the same objective 

functions. They also have similar variables with different domains. Variables of the LP can be assigned non-

negative real numbers, but the variables of the MIP must be assigned non-negative integers.  

 

2.3. The CCR Model  

Since there are eight trade off decision alternatives to be compared the CCR model is run eight times. Each 

model has 11 variables, 12 constraints and a single objective. 

 

2.3.1. Sets 

Set of trade off decisions (the optimality gap-runtime tuples, DMUs) 

                                                
Set of runtimes (Inputs): 

                                          
Set of optimality gap scores (Outputs): 

Optimality gap is the ratio of the MIP solution to the LP optimal solution and thus, less optimality gap is better. 

In other words optimality gap is an input type criterion. In this analysis the reciprocal of the optimality gap  
                                 ) is used as the output criterion and still referred as the optimality gap for 

simplicity. 

                                            
2.3.2. Parameters 

                                        
                               

                                         
                        

2.3.3. Data Set 
Table1 :Runtime and Optimality gap values of DMUs 

                                          

Runtime 0,63 1 2 3 4 5 6 7 

               0,078400 0,998614 0,998852 0,998936 0,998936 0,998936 0,998936 0,999118 

 

2.3.4. Variables 

                                                                  
                               

                            
       

2.3.5. Constraints 

The CCR model has three group of constraints. 

2.3.5.1. Input Related Constraints 

      

 

   

                 (35) 

2.3.5.2. Output Related Constraints 

      

 

   

                (36) 

2.3.5.3. Non-negativity Constraints 

              (37) 

 
      

    
           

     
              (38) 

2.3.6. Objective Function 

             (39) 
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III. RESULTS 

The LP optimal solution, various MIP solutions under various runtime limitations and the MIP constraint 

satisfaction model solution are summarized below in Table2. 

 
Table2 : LP and MIP Results Summarized 

 Objective Function Value Runtime (in seconds) Optimality Gap 

LP optimal soluition 71336 0,39 - 

MIP (constraint satisfaction) 909900 0,64 0,078400 
MIP 1second 71435 1 0,998614 

MIP 2seconds 71418 2 0,998852 

MIP 3seconds 71412 3 0,998936 

  71412   0,998936 

MIP 6seconds 71412 6 0,998936 

MIP 7seconds 71399 7 0,999118 

 

It can be observed from Table2 that the MIP solutions form a clear trade off between the solver 

algorithm runtime (i.e. the decision makers agility, speed to adapt to the changes in the conditions). The 

optimality gap-runtime tuples are different decisions the decision maker has to choose among. The data 

envelopment analysis provides the decision maker a tool to compare these alternatives. 

Table3 below presents the results of the CCR models. 

 
Tablo3 : Performance Analysis Results of the DMUs 

                                          

Efficiency Score 12,46% 100,00% 50,01% 33,34% 25,01% 20,01% 16,67% 14,29% 

      0,07851 1 1,00024 1,00032 1,00032 1,00032 1,00032 1,00051 

 

The sole efficient DMU is     .The efficient DMUs of CCR models represent the most efficient 

trade off between the inputs and the outputs. In other words investing 1second in the solver algorithm yields the 

most efficient reduction in the objective function and thus,      is the most productive scale size (i.e. the best 

choice). 

 

IV. CONCLUSION 

When decision makers face complex problems that they are required to solve repeatedly as the decision 

making environment change continuously, agility to respond become an objective. In such situations decision 

makers need a tool to have control over the solution time. 

Re-defining the problem as a trade off between sub-optimality and the solution time lets the decision 

maker to control the solution time and thus, the level of decision making agility. 

This paper suggests a dual approach for the situation. The complex problem is solved under some 

runtime limitation and the different levels of suboptimalities are recorded in the first phase. In the second phase 

the results obtained from phase one are compared using data envelopment analysis to identify the most efficient 

trade-off decision. 

 

V. DISCUSSION 

The data of this study was generated randomly and the problem size is deliberately kept small for 

simplicity. It is assumed that this compact decision environment is scalable to real life problems. It is also 

assumed that there are no efficient algorithms for the problem at hand. 

This study aims to expand the research in decision making area by composing a multiple criteria 

decision making technique and optimization together to empower the decision maker in solution time control for 

complex problems. The dual approach this paper suggest can be taken as an alternative to the meta-heuristic 

approaches. 
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